The Spectral Fingerprints and the Sounds of post-CMP PVA Brush Scrubbing

A. Philipossian, L. Mustapha, D. King and J. Weaver
The University of Arizona

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
Mechanism of Particle Removal Through Scrubbing

- PVA is compressed when it contacts a particle adsorbed on the surface of the wafer
- Pores and asperities on the surface of the brush:
 - Engulf the particle
 - Cause the exposed surface of the particle to adsorb on the surface of the brush (either mechanically, chemically or by capillary suction)
- Torque created by the rotation of the brush dislodges the particle from the surface
- Fluid present on wafer surface, & being pumped in and out of brush pores (during compression & elastic recovery of the brush), carries the particle away from the wafer
Motivation

- For PVA scrubbers with **simple kinematics**, Strubeck curves have been used to determine the lubrication mechanism of the scrubbing process and can help predict brush life, however:
 - Experimentally intensive
 - Inherent uncertainty in estimating the constituents of the Sommerfeld number
 - Fluid film thickness in the brush-wafer interface
 - Nodules
 - Mechanical properties of the polymer
 - Localized brush pressure as a function of brush deformation
 - Completely misleading when **complex kinematics** are involved

\[
So = \frac{(u) \times (\mu)}{(P_{\text{applied}}) \times (h_{\text{eff}})}
\]

- Effective fluid film thickness in the brush-wafer interface ...
 - Dependent on applied pressure
Pressure Mapping Apparatus

- X-wires
- Y-wires
- Pressure resistive sheet
- Protective laminate film

~ 200 microns
Relationship Between Brush Pressure & Contact Area

Rippey brush is 10% less compliant

Total range of pressures

Speedfam-IPEC brush

Brush Pressure (PSI)

Brush-Wafer Contact Area (square inches)
3-D Deformation Characteristics of Rippey Brush
Effective Fluid Film Thickness Approximation in the Brush-Wafer Interface

\[h_{\text{eff}} \sim (1 - \alpha) \times h_{\text{nodule}} \times \frac{A_{\text{ref-pressure}}}{A_{\text{pressure}}} \]

‘\(\alpha\)’ represents the area of the top of nodules to the area of the outer core of the brush.

\[\alpha_{\text{Rippey}} = 0.24 \]
\[\alpha_{\text{Speedfam-IPEC}} = 0.39 \]

Low Pressure

High Pressure

\[n_{\text{Rippey}} = 8 \]
\[n_{\text{Speedfam-IPEC}} = 9 \]
Goals

• Determine whether spectral analysis based on raw frictional data obtained during PVA brush scrubbing:

 – Can shed light on the tribology of the process as a function of:
 • Brush rotational velocity and oscillation frequency
 • Wafer velocity
 • Solution pH
 • Brush pressure

 – Can help ‘fingerprint’ the process and help in:
 • New endpoint detection methods
 • Process, consumables and equipment diagnostics
 • Elucidation of fundamental physical and chemical phenomena taking place during scrubbing

 – Can be extended to allow for its characteristic resonance to be set to music!
 • Technical benefits of the latter are yet to be determined
 • The possibility of reproducing the ‘sound’ of post-CMP scrubbing is, in and of itself, a curious endeavor
Apparatus

\[COF_{avg} = \frac{F_{Shear}}{F_{Normal}} \]
Experimental Conditions

• Constants:
 - Applied Pressure = 0.35 PSI
 in some cases, other pressures
 have also been investigated
 - Cleaning solution flow rate = 120 cc/min
 - Rippey Symmetry™ PVA-33 brush
 - Frictional force acquisition frequency = 1,000 Hz
 - Wafer type = 5,000 Angstrom ILD
 - Scrubbing time = 2 minutes

• Variables:
 - Brush rotational velocity
 • 10
 • 20
 • 30
 • 40
 • 50
 • 60 RPM
 - Brush oscillation frequency
 • 0 and 20 per minute
 - Wafer rotational velocity
 • 0 and 40 RPM
 - Cleaning solution pH
 • 1.1, 7.0 and 10.7
Striebeck Curves Corresponding to Simple Tool Kinematics (i.e. Brush Rotation Only)

- Brush rotation = 10 to 60 RPM
- Brush oscillation = 0 per minute
- Wafer Rotation = 0 RPM
- \(P = 0.25 \text{ PSI} \)

- Brush rotation = 10 to 60 RPM
- Brush oscillation = 0 per minute
- Wafer Rotation = 0 RPM
- \(P = 0.35 \text{ PSI} \)

- Brush rotation = 10 to 60 RPM
- Brush oscillation = 0 per minute
- Wafer Rotation = 0 RPM
- \(P = 0.55 \text{ PSI} \)
Brush rotation = 10 to 60 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

Brush rotation = 10 to 60 RPM
Brush oscillation = 20 per minute
Wafer Rotation = 0 RPM

Brush rotation = 10 to 60 RPM
Brush oscillation = 20 per minute
Wafer Rotation = 40 RPM

Strubeck Curves Corresponding to Complex Tool Kinematics

pH = 1.1
pH = 7.0
pH = 10.7
Simplified Schematics of Brush Macro-Deformation During Scrubbing

down pressure

down pressure and rotation

down pressure, rotation & oscillation (+)

down pressure, rotation & oscillation (-)

all of the above & wafer rotation (top view)
Likely Components of Total Friction Caused by the Sliding Action of an Elastomer on a Rigid Body in Wet Conditions

- **Adhesion**
 - **Surface phenomenon** occurring at points of ‘real’ contact
 - Induced by elastomeric structure of flexible chains which are in constant state of thermal motion
 - Formation of bonds between elastomeric chains & molecules on the surface
 - Stretching, rupturing and relaxation of bonds due to relative motion of the two bodies
 - Repetition of the above

- **Deformation (a.k.a. hysteresis)**
 - **Bulk phenomenon** occurring due to delayed recovery of the elastomer after indentation
 - Depends on the elastic or visco-elastic properties of the material

- **Electrostatic forces**
 - **Surface phenomenon** occurring due to presence of EDL
 - Depends on solution pH as well as the zeta potential of the rigid body and the elastomer

- **Capillary forces**
 - **Bulk phenomenon** occurring due to presence of voids and nature of surrounding fluids
Analyzing Raw Frictional Data

- **Typical Scrubbing Process:**
 - 2-minute
 - 1000 frictional force measurements per second
 - 120,000 data points per run

\[
\gamma = \text{Interfacial Interaction Index} \\
\gamma = \text{Area under the curve} \\
\gamma = \text{Total amount of mechanical energy caused by stick-slip}
\]

\[
F_{shear}(t) = F_{shear} + f(t)
\]

\[
\text{COF}_{\text{avg}} = \frac{\overline{F}_{\text{Shear}}}{F_{\text{Normal}}}
\]

Fast Fourier Transform
Contribution of Tool Vibration & Resonance to the Force Spectra

- brush nodule (macro-deformation) effects?
- brush nodule (micro-deformation) effects?

\[\gamma = \text{Area under the curve} \]
\[\gamma = \text{Total amount of mechanical energy caused by stick-slip} \]
\[\gamma = \text{... proportional to variance of frictional force} \]
Stribeck Curves Corresponding to Simple Tool Kinematics

Brush rotation = 10 to 60 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

\[P = 0.25 \text{ PSI} \]

\[pH = 1.1 \]
\[pH = 7.0 \]
\[pH = 10.7 \]

Brush rotation = 10 to 60 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

\[P = 0.35 \text{ PSI} \]

Brush rotation = 10 to 60 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

\[P = 0.55 \text{ PSI} \]
Gamma Curves Corresponding to Simple Tool Kinematics

Brush rotation = 10 to 60 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

P = 0.25 PSI

Brush rotation = 10 to 60 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

P = 0.35 PSI

Brush rotation = 10 to 60 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

P = 0.55 PSI
‘Gamma Criterion’ for Determining the Likely Lubrication Regime

Gamma > 0.001 … Boundary Lubrication

0.0001 > Gamma > 0.001 … Partial Lubrication

Gamma < 0.0001 … Hydrodynamic Lubrication
Time Domain & Frequency Domain Spectra
(pH = 1.1 and Pressure 0.35 PSI)

Brush rotation = 30 RPM
Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

Brush rotation = 30 RPM
Brush oscillation = 20 per minute
Wafer Rotation = 0 RPM

Brush rotation = 30 RPM
Brush oscillation = 20 per minute
Wafer Rotation = 40 RPM
Gamma Curves Corresponding to Complex Tool Kinematics

- **Brush rotation = 10 to 60 RPM**
 - Brush oscillation = 0 per minute
 - Wafer Rotation = 0 RPM

- **Brush rotation = 10 to 60 RPM**
 - Brush oscillation = 20 per minute
 - Wafer Rotation = 0 RPM

- **Brush rotation = 10 to 60 RPM**
 - Brush oscillation = 20 per minute
 - Wafer Rotation = 40 RPM
PVA Brush Scrubbing and The Violin

[Diagram of a violin with labeled parts: Chin rest, Tailpiece, Fine tuners, Bridge, Belly, F-holes, Tuning pegs, Scroll, Strings, Fingerboard, Neck, Back plate.]

[Graphs showing Bow Speed vs Time and String Speed vs Time, with waveforms indicating string speed changes over time.]
Waveforms in Time and Frequency Domains

$pH = 1.1; BV = 20$ RPM
$P = 0.25$ PSI

$pH = 1.1; BV = 20$ RPM
$P = 0.55$ PSI
Examples of PVA Brush Scrubbing Force Spectra

In all 3 Cases ... pH = 7.0 ; Brush Velocity = 30 RPM ; Brush Pressure = 0.35 PSI

Brush oscillation = 0 per minute
Wafer Rotation = 0 RPM

Brush oscillation = 20 per minute
Wafer Rotation = 0 RPM

Brush oscillation = 20 per minute
Wafer Rotation = 40 RPM

pH = 1.1 ; BV = 60 RPM
P = 0.55 PSI

pH = 7.0 ; BV = 60 RPM
P = 0.55 PSI
Summary

- **New tool & new methods** developed to precisely quantify the extent of wafer-brush frictional forces
- **Stribeck curves:**
 - Useful in determining the lubrication mechanism for simple kinematics
 - Misleading when complex kinematics are involved
- **New spectral technique developed for determining the tribological mechanism of a given process in terms of stick-slip phenomena:**
 - Based on FFT spectral analysis of raw frictional waveforms in time domain
 - Subsequent integration of the resulting spectrum in frequency domain
- **New parameter (Gamma) obtained at multiple pressures, kinematics and pH values:**
 - Gamma > 0.001 (BL)
 - 0.0001 > Gamma > 0.001 (PL)
 - Gamma < 0.0001 (HL)
- **Above method may potentially eliminate the need for Stribeck curves:**
 - Experimentally efficient
 - No need to compute the Sommerfeld Number
 - Does not require any prior knowledge of the particulars of the process
- **Significant differences in the ‘Spectral Fingerprint’ among various processing conditions:**
 - May pave the way towards design of novel brushes and processes
- ‘Spectral Fingerprint’ allows the unique ‘sounds’ of post-CMP PVA brush scrubbing to be synthesized for various processes
Acknowledgements

• Daniel Rosales-Yeomans (MP3 sound files)

• Rippey Corporation (PVA brush donation)

• NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing (financial support)
Solubility & Gellation Characteristics of Silica (ILD) in the SiO2-Water System

pH = 1.1 ... High values of COF due to strong localized gelling in the brush-wafer interface
Polymerization of silicic acid monomers to form high MW ‘particles’
Collision and aggregation of above ‘particles’ to form 3-dimensional networks (gels)

pH = 7.0 ... Moderate values of COF due to increased stability of the system
Little or no tendency to gel
Increase in hydroxyl groups causing breakage of network-forming siloxane bonds
Partial hydration of ILD surface with network-terminating Si-OH groups

pH = 10.7 ... Low values of COF due to complete dissolution of silica
ILD surface is continually dissolving and rejuvenating
Complete elimination of silanol groups from the surface