Consumable Technologies to Cover a Wide Variety of CMP Applications

US CMPUG, 9 April 2008
Presenter: Paul Feeney, CMP Fellow
Outline

- Need for new IC CMP applications

- Existing applications
 - Tungsten, Dielectric, Copper, Barrier

- New applications
 - Emerging IC applications
 - Extension beyond IC’s

- Summary
Why Do We Need New CMP Applications?

- New CMP applications arise when continuous improvement of consumables and equipment are not sufficient
- New applications are driven by smaller dimensions
 - Requirements for a given CMP process get tougher
 - Step function in performance needed
 - Need to optimize away from general purpose consumables
 - IC integration changes with each new advanced node
 - New and more complex structures drive new combinations of existing materials
 - Increased complexity leads to segmentation of requirements
 - New materials required to get chip performance and yield
 - Benefits of CMP spilled over into DRAM and NVRAM/flash
 - Accelerated by performance requirements and falling CMP CoO
ITRS 2007 Planarization Applications

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM 1/2 Pitch</td>
<td>65nm</td>
<td>57nm</td>
<td>50nm</td>
<td>45nm</td>
<td>40nm</td>
<td>35nm</td>
<td>32nm</td>
<td>29nm</td>
<td>25nm</td>
<td>22nm</td>
<td>20nm</td>
<td>18nm</td>
<td>16nm</td>
<td>14nm</td>
<td>13nm</td>
<td>12nm</td>
</tr>
</tbody>
</table>

Major Applications

Dielectrics
- Shallow trench isolation (STI) [direct]
- Premetal dielectric (PMD) [target & selective]
- Interlevel dielectric (ILD) [memory]
- New applications [i.e. Si nitride]

Conductors
- Polysilicon & target [selective]
- Tungsten/buffer [contact & via]
- Copper/barrier [4.0 > κ eff > 2.5]
- Copper/new barrier [2.7 > κ eff > 2.0]
- Copper/new barrier [2.2 > κ eff > 1.4]
- New applications [i.e. new contact]

This legend indicates the time during which research, development, and qualification/pre-production should be taking place for the solution.

- **Research Required**
- **Development Underway**
- **Qualification / Pre-Production**
- **Continuous Improvement**

©2008 Cabot Microelectronics Corporation
ITRS 2007 Planarization Consumables

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM 1/2 Pitch</td>
<td>65nm</td>
<td>57nm</td>
<td>50nm</td>
<td>45nm</td>
<td>40nm</td>
<td>35nm</td>
<td>32nm</td>
<td>28nm</td>
<td>25nm</td>
<td>22nm</td>
<td>20nm</td>
<td>18nm</td>
<td>16nm</td>
<td>14nm</td>
<td>13nm</td>
<td>12nm</td>
</tr>
<tr>
<td>CONSUMABLES</td>
<td></td>
</tr>
<tr>
<td>Fluids</td>
<td></td>
</tr>
<tr>
<td>High solids slurries</td>
<td></td>
</tr>
<tr>
<td>Slurries with low solids/defects/cost</td>
<td></td>
</tr>
<tr>
<td>Optimized formulations from tunable platforms</td>
<td></td>
</tr>
<tr>
<td>Fluids for chemical enhanced planarization and ECMP</td>
<td></td>
</tr>
<tr>
<td>General cleaning solutions</td>
<td></td>
</tr>
<tr>
<td>Cleaning and buff solutions tailored to applications</td>
<td></td>
</tr>
<tr>
<td>Pads</td>
<td></td>
</tr>
<tr>
<td>Urethane pads for new applications</td>
<td></td>
</tr>
<tr>
<td>Abrasive containing pads</td>
<td></td>
</tr>
<tr>
<td>Range of alternative pads for planarity/defects/cost</td>
<td></td>
</tr>
</tbody>
</table>

This legend indicates the time during which research, development, and qualification/pre-production should be taking place for the solution.

- Research Required
- Development Underway
- Qualification / Pre-Production
- Continuous Improvement
Core Product Pipeline
Advanced Solutions Across Applications

<table>
<thead>
<tr>
<th>Tungsten</th>
<th>Advanced Dielectric / ILD</th>
<th>Copper</th>
<th>Barrier</th>
<th>CMP Pads</th>
<th>Emerging Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2000 Series</td>
<td>Semi-Sperse Series</td>
<td>C5000 Series</td>
<td>B5200 Series</td>
<td>D100</td>
<td>Aluminum</td>
</tr>
<tr>
<td>W6000 Series</td>
<td>D1300 Series</td>
<td>C6000 Series</td>
<td>B6618</td>
<td></td>
<td>Ruthenium</td>
</tr>
<tr>
<td>W7000 Series</td>
<td>D3500/D4500 Series</td>
<td>C7000 Series</td>
<td>B7000 Series</td>
<td></td>
<td>Nitride</td>
</tr>
<tr>
<td></td>
<td>D6700 Series</td>
<td>C8000 Series</td>
<td>B8500 Series</td>
<td></td>
<td>Dielectric Poly</td>
</tr>
<tr>
<td></td>
<td>D8100 Series</td>
<td></td>
<td></td>
<td></td>
<td>Noble Metals Metal Gates</td>
</tr>
</tbody>
</table>

© 2008 Cabot Microelectronics
Tungsten Solutions for Advanced Technologies

Selective Approach

W7000

<table>
<thead>
<tr>
<th>Customer Requirements</th>
<th>High Selective Solution for Advanced Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
<td>Fumed Silica and Etch Inhibitors</td>
</tr>
<tr>
<td>Performance</td>
<td>W:Ox (200:1) Erosion < 200Å Defectivity = < 0.25X</td>
</tr>
<tr>
<td>Manufacturing Status</td>
<td>Commercial in Japan</td>
</tr>
</tbody>
</table>

Tunable Selectivity Approach

W7300

<table>
<thead>
<tr>
<th>Customer Requirements</th>
<th>Tunable Selectivity for Advanced Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
<td>Colloidal Silica and Etch Inhibitors, Compatible with All Other CMC W Products</td>
</tr>
<tr>
<td>Performance</td>
<td>W:Ox (Tunable) Erosion < 200Å Defectivity = < 0.25X</td>
</tr>
<tr>
<td>Manufacturing Status</td>
<td>Commercial in Japan</td>
</tr>
</tbody>
</table>
Edge-Over-Erosion (EOE) Performance

EOE is significantly reduced / eliminated with our advanced WIN™ products
Best-in-Class Defect Performance

Normalized Counts

Spots on Dielectric Spots on Metal Scratches

W2000 W7000 W7300

©2008 Cabot Microelectronics Corporation
W7300 Best-in-Class Performance *Buff Step*

1st Step: W2000 1:1 dil

Plug Device
0.16 um/25% density

Erosion (Å)

Significant reduction in both defectivity and erosion after W7300 buff step
WIN™ W7300 B21 / Epic® D100 Combo

Erosion Performance – Mirra 200mm

WBAApps117: Patterned Plug Oxide Erosion
D100 vs IC1000 for WIN™ W7300-B21 on Ebara

- **200 nm Via, 25% pattern density**

Polish Process
- BSP = 225 hPa
- SCP = 275 hPa
- RRP = 225 hPa
- CS = 55 rpm
- SFR = 150 ml/min
- Polish time = 60 s

IC1000 Pad
- PS (IC1000) = 100 rpm

D100 Pad
- PS (D100) = 125 rpm

©2008 Cabot Microelectronics Corporation
D100 Improved Defectivity

Defect and Scratch Counts
(MIT 854 Mask Patterned Wafers)

Total Defects

Average Scratch Count
18

Average Scratch Count
28

D100
Pad
Con. hard pad

> 35% defectivity reduction by using D100 pads

©2008 Cabot Microelectronics Corporation
D100 Longer Pad Life

- Longer pad life confirmed in high volume manufacturing
 - 2.5x conventional hard pad
 - 4x polyurethane impregnated polyester pad

- Improved CoO for Customers

** 15 mils groove depth
iDIEL™ D6720

and Extension to STI Applications

Abrasive Type

Chemistry

Hydrothermal Ceria

pH ~ 5.1
High Purity (no KOH)
Rate Control Additive

Self-Stopping Additive (SSA)

Mechanism

Balanced Chemical & Mechanical
high Ox/SiN selectivity

Self-Stopping When Added to C2

Mean Particle Size

~ 90 nm

none

Particle Concentration (POU)

< 1.0%

none

Method of Use

2X Concentrated
POU or In-line mixing
with B10 or by itself

POU Mixing
With D6720

©2008 Cabot Microelectronics Corporation
iDIEL™ D6720

Dielectric Removal on ILD Pattern

Planarity Target (SH + ~1500A)

D6720 planarizes faster compared to SS25E (polishing time can be shorter)
iDIEL™ D6720

D6720 shows 3X reduction in defectivity compared to SS25E
iDIEL™ D6720

POU Mixing of SSA - ILD Test Pattern

POU addition of SSA (B10) to D6720 reduces WID variation >3X
POU Mixing of SSA - STI Test Pattern (Logic)

D8100 is better than D6720 for planarity on STI test pattern

Range ~ 400A

Range ~ 790A

D6720+B10 (135:65) = 90 sec

D8100-A10+B10 (135:65) = 90 sec
D8100 is better than competitor slurry for planarity on STI test pattern
Formulation Design for C8100

- pH buffered near neutral to balance oxidation/dissolution mechanisms
- Addition of “dual functional” additive for Cu surface passivation

NFFC = “Novel Film Formation Chemistry”
C8100 Slurry Properties

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>C8100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution Ratio</td>
<td>5X – 10X</td>
</tr>
<tr>
<td>pH (at POU)</td>
<td>6</td>
</tr>
<tr>
<td>Particle</td>
<td>Nano-Colloidal Silica</td>
</tr>
<tr>
<td>Particle % (at POU)</td>
<td>0.5 – 1.0%</td>
</tr>
<tr>
<td>Peroxide Addition</td>
<td>1%</td>
</tr>
</tbody>
</table>

C8100 Selectivity

<table>
<thead>
<tr>
<th>Downforce (psi)</th>
<th>Copper Removal Rate (Ang/min)</th>
<th>Tantalum Removal Rate (Ang/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2420</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>4360</td>
<td>0</td>
</tr>
</tbody>
</table>

©2008 Cabot Microelectronics Corporation
Polishing Tool Fault Simulation – iCue® C8100

C8100 - Copper Blanket Defect Pareto vs Tool Hang-up Time

300mm AMAT Reflexion

No Corrosion

Note: SP1 Copper Defect Threshold @ 0.25μm
D100 Enhanced Planarity

- **Copper Planarity**
 - D100 dramatically enhances bulk Cu planarization efficiency
 - D100 delivers improved dishing and erosion performance
Impact of Wettability on Low-K Rate

Low k Rate Control for Rs Variability Reduction

Second Generation Barrier

First Generation Barrier

Tailored Inhibitor Package

Selective Inhibitor

Dual Inhibitor System (BD-1 Specific)

Contact Angle

No Inhibitor

Low k RR (A/min)
Low K Removal Mechanism

Oxide (hydrolyzed) Incorporated
Black Diamond Surface

RR (hybrid) > or = RR (TEOS)

Black Diamond
(k= 2.7-2.8)

Surfactant
(BD Inhibitor)

Carbon Rich BD Surface
(More Hydrophobic)
Verification of Mechanism

©2008 Cabot Microelectronics Corporation
Tailored System Shows Enhanced Rs

Tailored system wafers have lower SD than control slurry ~ **49% improvement.**

Customer Validation of Rs Variability Reduction

Overpolish Sensitivity
Drawback of Passivation Chemistry

Suppression of Copper Rate

Results

Erosion: 44.55 nm
Dishing: 17.09 nm

Copper Protrusion

Requires Copper Rate Tunability
Copper Rate Control Mechanisms

- **Film Formation Control—Rate Suppression.**
 - Inhibitor Level—BTA for example.
 - Oxidizer Level—Peroxide for example.
- **Promotion Chemistry.**
 - Complexing Agent.
 - Structural Control.

Validation of Robust Film

- Enhanced Protection of Copper
- Complexer + BTA
- Complexer + BTA + Gen 2 Package
- Chosen Complexer

Increasing Hydrophobicity of Cu Complexing Agent

Yellow chosen based on balance between Film Formation and Removal
Increased “Chemical” Cu Rate Reduces Protrusion

Data Shown for Model S

Copper Dishing

Results

Erosion: 27.16 nm
Dishing: 2.90 nm

Latest Performance Shows Dishing < 100 Å, Erosion < 100 Å.
New CMP Applications In FEOL

- **Strain Engineering**
 - eSiGe, SiC, Si$_3$N$_4$
 - Selective and non-selective CMP steps

- **Replacement Metal Gate**
 - **New Dielectric**
 - Poly/Ox/Nit non-selective
 - Ox and/or Nit stop on Poly
 - **Metal Damascene**
 - Metal Silicidies (NiSi, CoSi, YbSi, etc.)
 - Al, TaCN, Ru

- **New Transistor Structures**
 - **New Dielectric**
 - Nit stop on OX, Nit/Ox non-selective

- **Si Replacement**
 - Ge, III/IV (InSb), InGaAs
New CMP Applications In BEOL

Alternative Liner CMP
- Ru, CuMn

Dielectric Cap
- Carbides, Nitrides

New Dielectric CMP
- Porous Low-k
- Air Gap
- Low Stress CMP?

Metal wire CMP Other than Cu?
- Al?

New Contact Metal CMP
- Cu, Rh
Additional New IC Related CMP Applications

- **DRAM**
 - New capacitor materials: Ru, TiN, Noble Metal?
 - Advanced poly CMP with high planarity

- **FLASH**
 - “Reverse” Poly for floating gate

- **New Non-Volatile Memory**
 - PRAM (GST CMP)
 - FeRAM (Noble Metal)

- **3D IC’s**
 - Through Si Vias
 - Thinning
Emerging Dielectrics and Exotic Materials

Other FEOL Dielectrics

Nitride/Oxide Selective

Colloidal Silica and Ceria Platforms

Nitride/Oxide Non selective

SiC

GST

Ru

©2008 Cabot Microelectronics Corporation
Emerging Metals and Exotic Materials

Noble Metals

Treated Alumina Platforms

Al

Ru
Developing Finishing Solutions for Multiple Applications

- Prime Silicon Wafer
- Flat Panel Displays
- Precision Optics
- Compound Semiconductor
- Healthcare
- Defense/Aerospace
- Solar Energy
- Data Storage/Hard Disk Drive
1. Unique complexer stabilizing H2O2 for consistent removal rates

2. > 10 mg/min removal rate over pad life for greater throughput with 7-9 nm size particles

3. ~1Å surface roughness (AFM Rₐ)

4. Less scratch severity
ESF Opportunities - Examples

Aluminum Mirror Polishing
Producing the best aluminum mirrors

Single Point Diamond Turning
- Grating effect due to turning marks
- Limited to > 50A rms
- Use limited to narrow frequency range

ESF Polishing process
- No grating effect
- Achieve < 15A rms
- Enable use in wide frequency range

Silicon Carbide Polishing
Enabling higher rate

ESF Gen I - commercialized
- 2 X rate vs. POR
- Achieve 1 A rms reliably

ESF Gen II – In development
- 10 X rate vs. POR
- Achieve 1 A rms reliably

©2008 Cabot Microelectronics Corporation
Growing number of CMP applications drives strong need for consumables innovation

Innovation being achieved to support IC needs

Technology being extended outside of IC’s
Perfecting the Surfaces of Tomorrow™