Challenges for CMP Consumable Suppliers

April 4, 2007
The Challenge of Chip Technology

Smaller dimensions and larger wafers

- CMP process requirements are more demanding
- Innovative wafer states, structures, and materials are required
 - Drives new CMP applications
 - Each new CMP process must robustly meet requirements
 - Added chip complexity leads to divergent requirements
- Investment is required years in advance
Outline

CMP Challenges:

• Tighter performance requirements
 — Epic® D100 Pad / Tungsten

• Customized solutions
 — Poly/Nitride/Oxide Platform

• New applications / materials
 — Ruthenium

• Q&A
Tighter Performance Requirements
“Big 4” CMP Requirements by Application

Wafer Yield
- Planarity
 - Cu M1-M5 loss -13% / yr
 - With Lower Variation

Defectivity
- Density -25% / yr
- Size -13% / yr
- Eliminates Impurities and Variation

Productivity
- CoO/CoC
 - Step Function versus Past
 - Driving CoO and also CoC

Support
- Customization Consistency / CI
- Full Support Supply Assurance
Improved Erosion with Epic® D100 Pad and WIN W7300

Baseline with W7300
D100 with W7300
w/ W2000

Pattern Density (%)

Erosion (Å/min)

Baseline with W7300
D100 with W7300
D100 with W2000

© 2007 Cabot Microelectronics Corporation
Better Defectivity Performance

Total Defect Counts on MIT 854 Mask Patterned Wafers

D100 pad shows improvement in total defect counts compared to baseline
Improved CoO for Customers

Extended Run* on D100 Window Pad (W2000 1:1 diluted with 2.4% H₂O₂)

* From experiments which simulate the production polishing process with long conditioning process.
Customized Solutions
Platform Development—Optimization of Tunability

- Barrier (Ta/TaN)
 - Low K
 - Down Force Tunable
- Low K
 - Chemically & Down Force Tunable
- Copper
 - Independently Chemically Tunable
 - Politex
 - Hard
- TEOS
 - Tuned to Customer-Specific Incoming Topography

© 2007 Cabot Microelectronics Corporation
New Applications and Materials
The Future CMP Alphabet

Aluminum

Ir/IrO₂

Cu

Ta/TaN

Ru

SiO₂

TaN

FUSI

SiN

CDO

Noble Metals

GST

SiO₂/SiN

BPSG

W

CuMn

POLY

Si

HfO₂

HfSIO
iCue® B9000 Slurry (Platform) Tunable Selectivity

Process comparable to DF/TS=1.5psi/120rpm on Mirra

B9000 Ru and Ta Slurry (Platform) with H₂O₂ as an oxidizer and selected chemistries:

• Safe (will not form toxic RuO₄)
• Colloidally stable
• Applicable to Ru and Cu with no galvanic corrosion
• Tunable for Cu / Ru / Ta barrier selectivity with knobs identified and understood

* Ru removal rate is dependent on the deposition process (between 350-500 Å/min)

i-Cue® B9000 platform shows good Ru RR and tunable Cu/Ru/Ta selectivity
Summary

• Current Challenges for CMP Suppliers are:
 – Tighter Performance Requires, and CoO
 – Customized Solutions
 – Development for a variety of new materials

• We hope to work together with our customers to meet these challenges
Perfecting the Surfaces of Tomorrow™