Advanced Tungsten CMP with No Pad Conditioning

Presentation to the NCCAVS CMP Users Group
May 5, 2004

By

Robert Rhoades (Polishing Solutions International, LLC)
Anthony Clark (psiloQuest, Inc.)
John Bare (psiloQuest, Inc.)
Contents

Background Information

Process Data Using ASP-W3525 Pads
(Peroxide concentration, downforce, table speed, etc.)

Process Qualification and Production Results
- Extended run
- Contamination data
- Lot-to-lot consistency

Contact info
PSI provides professional outsource CMP for everything from prototypes and development work through volume outsource production.

Desired properties for a tungsten CMP production process:
- Excellent pad-to-pad and lot-to-lot consistency
- Reasonable removal rate and very low uniformity
- Low defectivity
- Minimal conditioning (zero if possible)
- Long pad life

Multiple pads screened and best performance achieved with the psiloQuest ASP-W3525 pad.
Peroxide Concentration Study

RR Study comparing Down-Force @ % H2O2 concentration variations

Polisher: IPEC 472
Slurry: Cabot SSW-2000
Simplified DOE shows strongest response to oxidizer concentration.

Negative slope for removal rate vs table speed is likely an artifact of simplified design.
AMAT Mirra Process DOE Results

- Membrane pressure (downforce) is largest predictor coefficient
- Wide process margin on all other variables tested
- Consistent with trends observed in IPEC 472 data

Least Squares Fit

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>3856.42</td>
</tr>
<tr>
<td>WIWNU</td>
<td>1.734275</td>
</tr>
</tbody>
</table>

Response Surface Effects on AMAT MIRRA MESA using 1:1 SSW2000:DIW

Variables:
- MP
- RRP
- ITP
- TS
- HS
- Head Sweep
- Oxidizer Conc.
- SF
Ebara EPO222 Process DOE Results

Recent data taken on Ebara EPO222 polisher

• Downforce (DF) has the biggest effect on measured response parameters
• TurnTable (Table Speed) has very minimal effect on the response parameters.

• As expected, tungsten RR (W-RR) increases as Downforce (DF) increases.
• BSP has mild inverse effect on W_RR, W-WIWNu and W-Pad Temperature
Pad Variability Study

Polishing data taken across multiple pads
- Total of 20 ASP-W3525 pads
- Includes 5 different raw material lots

Rate and uniformity data taken on 3 monitor wafers per pad
- All polishing performed on IPEC 472 polisher at psiloQuest apps lab
- Data compiled into single dataset for comparison

Demonstrates excellent pad-to-pad consistency across multiple lots
Multi-Lot Removal Rate Variation

<table>
<thead>
<tr>
<th>Distributions</th>
<th>P-RR (A/MIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2750</td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td></td>
</tr>
<tr>
<td>2650</td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>2550</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>2450</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>2350</td>
<td></td>
</tr>
</tbody>
</table>

Moments

- Mean: 2532.7365
- Std Dev: 94.865909
- Std Err Mean: 11.027938
- upper 95% Mean: 2554.7151
- lower 95% Mean: 2510.7578
- N: 74
Multi-Lot WIWNU Variation

<table>
<thead>
<tr>
<th>Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Stdev</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std Dev</td>
</tr>
<tr>
<td>Std Err Mean</td>
</tr>
<tr>
<td>upper 95% Mean</td>
</tr>
<tr>
<td>lower 95% Mean</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>
Production Qualification

Elements of Rapid Qual Plan

- 50-wafer baseline run for blanket film rate and uniformity
- SIMS/TXRF data showing residual contamination levels
- Defectivity
- Device yield on multiple split lots

Results

- All qualification runs completed in very short timeframe
- Comparison to in-fab process showed equal or better performance on all critical metrics
First attempt 50-wafer baseline run

Date: March 2004
Polisher: IPEC 472
Pad: psiloQuest
Slurry: Cabot SSW-2000 (diluted 1:1 + 4% H2O2)
Conditioning: None
SIMS / TXRF contamination data

Key Points

- Comparison to IC1000 shows equal or better performance
- All values from PSI lab are less than or equal to fab reference

<table>
<thead>
<tr>
<th>#</th>
<th>Element</th>
<th>Element Reference</th>
<th>IC1000 Process 472's at PSI</th>
<th>pQ Pad on 472 at PSI</th>
<th>pQ Pad on 372M at PSI</th>
<th>Scrubber Qual</th>
<th>Second Scrubber Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>108.07</td>
<td>81.91</td>
<td>96.28</td>
<td>76.24</td>
<td>80.32</td>
<td>84.78</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>478.7</td>
<td>402.44</td>
<td>368.09</td>
<td>389.6</td>
<td>383.63</td>
<td>384.49</td>
</tr>
<tr>
<td>3</td>
<td>Cl</td>
<td>79.84</td>
<td>80.31</td>
<td>80.98</td>
<td>66.78</td>
<td>77.42</td>
<td>72.85</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Ca</td>
<td>5.18</td>
<td>14.97</td>
<td>7.74</td>
<td>39.96</td>
<td>5.75</td>
<td>3.62</td>
</tr>
<tr>
<td>6</td>
<td>Sc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Ti</td>
<td>0.65</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Cr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Mn</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Fe</td>
<td>179.11</td>
<td>114.37</td>
<td>95.44</td>
<td>95.03</td>
<td>0.94</td>
<td>0.45</td>
</tr>
<tr>
<td>12</td>
<td>Co</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Ni</td>
<td>0</td>
<td>1.11</td>
<td>0.21</td>
<td>0.08</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Cu</td>
<td>0.1</td>
<td>2.53</td>
<td>0.74</td>
<td>3.93</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Zn</td>
<td>0.05</td>
<td>11.37</td>
<td>3.38</td>
<td>15.39</td>
<td>0.85</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>W</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Cross section of completed via

- Excellent plug planarity and controlled recess.

- End-of-line device yield equivalent between outsourced CMP and existing qualified fab process.
Blanket Film Qual Data through Typical Pad Life

ASP-W3525, IPEC472, SSW2000 @ 4% H₂O₂

Cumulative Polish Time = 2,561 minutes
Normalized Production Lot Polish Time

Over 100 production lots across multiple pads showing very repeatable polishing performance
Conclusions

The psiloQuest ASP-W3525 tungsten CMP pad provides:

- Excellent pad-to-pad and lot-to-lot consistency
- Reasonable removal rate and very low uniformity
- Zero conditioning required
- Low defectivity
- Long pad life

Through PSI, the end customer has achieved:

- Immediate capacity with no capital outlay
- Product yield equivalent to current fab in-house production
Contact Information

Rob Rhoades, President
Polishing Solutions Int'l.
Tel: 602-426-8668
Fax: 602-426-8678
rrhoades@totalfabsolutions.com

Tony Clark, Process Engineer
John Bare, Tungsten and Oxide CMP Program Director
psiloQuest, Inc.
6901 TPC Boulevard Suite 650
Orlando, FL 32822
Tel: 407-781-7237 or 888-CMP-PADS
tclark@psiloquest.com
jbare@psiloquest.com