Keeping Your CMP Slurry From Being A Pain in the As-Probed Die Yield

Robert L. Rhoades (Entrepix)
Brian Orzechowski and Jeff Wilmer (DivInd, LLC)

Presentation for the Levitronix Conference
February 10, 2009
Background

Generalized Diagnostics

Examples

Summary
Components of CMP

Polisher
 + Polishing Pad
 + Slurry
 + Conditioning disk (usually)
 + Process recipe
 + Wafers
 + Deposited film(s)
 + Li’l bit o’ bloomin’ luck
And to make life even more fun …

Each new material or integration is likely a **new** puzzle!!
Background

- Process has been in manufacturing for >15 yrs
 - Excursions and deviations still occur regularly
 - Control limits on most wafer metrics keep shrinking
 - Downtime is costly … scrap is even more costly!

- Slurry is a key factor for all major CMP processes
 - Removal rate, selectivity, roughness, dishing, erosion, defect density, etc. can all be affected by slurry
 - Storage and distribution are critical
Why is slurry important?

Higher large particle counts (LPC) = higher defects

Slurry properties have a DIRECT connection to CMP defects.

Costs add up:
- Lower yield
- In-line scrap
- Down time
Fishbone Diagram

Things that make you go HMMM …

- A helpful brainstorming tool
- Results easily transfer to FMEA (if desired)
A familiar sequence to any fab process engineer ...

The key is to find root cause and get back on line as quickly as possible!
• Impact when CMP has a failure …
 Near end of line → High cost per scrap wafer
 Seldom enjoys overcapacity → Risks to die out schedule
 Consumables + wafers → Expensive troubleshooting

• CMP complexity requires many factors be checked

• Troubleshooting efficiency can be improved with a systematic diagnostic sequence
Diagnostic Sequence

Single Tool

- End of pad life
- Conditioner life
- Filter (if used)
- Peristaltic tubing
- Calibration drift
- Valve (post-loop)
- Pump (if present)

Fix and Verify
Example #1

Observations

- Toolset running stable
- One idle polisher was brought back on line and failed defect quals on successive tries
- LPC tail shows delta between slurry loop and sample at platen

Solution

- Perform PM on tool
- Returned to baseline so further action was not required
Diagostic Sequence

Single Tool
- End of pad life
- Conditioner life
- Filter (if used)
- Peristaltic tubing
- Calibration drift
- Valve (post-loop)
- Pump (if present)

Multi-Tool Commonality
- Sudden onset?
- Slurry lot change
- Loop filter change
- Test wafer lots
- Operating setpoints
- Pumps
- Valves

Fix and Verify
Example #2

Observations

- Oxide CMP
- Rate qual failure
- Simultaneous shift in uniformity
- Series of similar qual fails on multiple tools
- No shift in defects
Solution #2

Diagnostics

• Label possibly related events on chart
• Clear timing with new slurry lot (new tote)

Short Term “Fix”

• Purge / flush / refill
• Recharge with a different slurry lot

Long Term Improvements

• Improved control at slurry manufacturer
• In-line monitoring for pH and S.G. (% solids)
Example #3

Observations

- Particle monitor installed for passive data collection
- Small random spikes in 2um and 5um bins correlate with wafer level defect qual data
- No commonality to tool, pad changes, etc.
- Coincided with a fraction of drum changes
Solution #3

Diagnostics
- Loose commonality to certain lots of slurry
- Filtration tests promising

Short Term “Fix”
- Purge / flush / refill
- Transfer filter
- Continue monitoring

Long Term Improvements
- LPC and defect qual data correlation confirmed
- Early flag for engineering on any OOC data point at transfer
Diagnostic Sequence

Single Tool
- End of pad life
- Conditioner life
- Filter (if used)
- Peristaltic tubing
- Calibration drift
- Valve (post-loop)
- Pump (if present)

Multi-Tool Commonality
- Sudden onset?
- Slurry lot change
- Loop filter change
- Test wafer lots
- Operating setpoints
- Pumps
- Valves

Trend Analysis

Fix and Verify

SLURRY PARMS
- Slurry pH
- Density (or S.G.)
- Concentration [X]

WAFER DATA
- Rate / Uniformity
- Defects (qual)
- Defects (on product)

SERVICE OPERATIONS
- System settings
- Pump rebuild life
- Batch transfers
- Drum switchovers
Example #4

Observations

- Tungsten CMP
- Random qual failures
- Some recovery after pad changes

- Observed on multiple tools
- No shift in defects
Solution #4

Diagnostics
- Plot with trend line
- Assay slurry [H2O2]
 - Fresh mix
 - In loop

Short Term “Fix”
- Purge / flush / refill
- Manual [H2O2] monitor

Long Term Improvements
- Avoid excess day tank volume (keep turnovers reasonable)
- In-line monitoring for [H2O2] and auto-dose replenishment
[H2O2] Decay

Bench Test
- Single batch of tungsten slurry
- Target mix 3% H2O2
- Circulated in clean loop with data point taken every 10 min.

Result
- Strong [H2O2] decay observed over roughly 12 hours
- Similar effects occur in global loops, though possibly with different time constants depending on design
• Partially completed fishbone for particle qual failures

GROUPINGS OF POSSIBLE ROOT CAUSES

- Inadventent change
- Wrong slurry/chemical
- Data entry error
- Wrong recipe
- Valve or pump fail
- Peristaltic tubing
- Leaks
- Calibration drift
- Control system
- Poor process optimization
- Poorly designed loop
- PM frequency or scope
- Insufficient monitors
- Inadequate tool clean
- Contamination
- End of filter life
- Slurry pot life
- Pad / conditioner life
- Slurry lot

Things that make you go HMMM …
Summary

• Slurry is one of the most critical ingredients for maintaining a consistent CMP process
• When excursions occur (and they do), the key is to find the problem quickly
• Follow a systematic troubleshooting approach
• Design (or redesign) slurry delivery methods to minimize risks AND accumulate the proper data for efficient troubleshooting
Design Inputs

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>DESIGN PARAMETER</th>
<th>DESIGN CONSIDERATIONS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEND</td>
<td>1. RECIPES</td>
<td>1. VOLUME BASED</td>
<td>1. RANGE LIMITATIONS</td>
</tr>
<tr>
<td></td>
<td>2. TOLERANCES</td>
<td>2. MASS BASED</td>
<td>2. CALIBRATION</td>
</tr>
<tr>
<td></td>
<td>3. SPECIFIC CONSTITUENTS</td>
<td>3. HYBRID</td>
<td>3. HANDLING</td>
</tr>
<tr>
<td></td>
<td>4. METHOD</td>
<td>4. TANK STYLE</td>
<td>4. THROUGHPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. AGITATION</td>
<td></td>
</tr>
<tr>
<td>MIX RECIPE</td>
<td>1. IN-LINE</td>
<td>1. pH, DENSITY</td>
<td>1. BATCH TIME TRADE-OFFS</td>
</tr>
<tr>
<td>VALIDATION</td>
<td>2. OFF-LINE</td>
<td>2. SOLIDS CONTENT</td>
<td>2. ACCEPT/REJECT CRITERIA</td>
</tr>
<tr>
<td></td>
<td>3. HUMAN</td>
<td>3. CONCENTRATION</td>
<td>3. LEVEL OF AUTOMATION</td>
</tr>
<tr>
<td></td>
<td>4. AUTOMATED</td>
<td>4. PARTICLE</td>
<td>a. PROCESS CONTROL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. OTHER</td>
<td>4. THROUGHPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISPENSE</td>
<td>1. RISE/RUN</td>
<td>1. DISPENSE ENGINE</td>
<td>1. DESIGN FOR LONG TERM GROWTH, NOT IMMEDIATE NEED</td>
</tr>
<tr>
<td></td>
<td>2. DEMAND RATE</td>
<td>2. LEVEL OF CONTROL</td>
<td>2. UPGRADEABLE</td>
</tr>
<tr>
<td></td>
<td>3. CURRENT/FUTURE SCALE</td>
<td>a. PRESSURE</td>
<td>3. EASE OF SERVICE</td>
</tr>
<tr>
<td></td>
<td>4. REDUNDANCY</td>
<td>b. FLOW</td>
<td>4. ALARM/CONTROL</td>
</tr>
<tr>
<td></td>
<td>5. METRICS</td>
<td>3. FULLY AUTOMATED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. SIMPLICITY</td>
<td></td>
</tr>
<tr>
<td>FILTRATION</td>
<td>1. DRUM</td>
<td>1. REDUNDANCY</td>
<td>1. MINIMIZE EFFECTS TO PRODUCTION THROUGHPUT</td>
</tr>
<tr>
<td></td>
<td>2. BLEND</td>
<td>2. STEPPED</td>
<td>2. INSTALL IN MOST EFFICIENT AREA OF PROCESS</td>
</tr>
<tr>
<td></td>
<td>3. DISPENSE</td>
<td>3. CONTROL METRICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. POU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you

Contact Info:

Robert L. Rhoades, Ph.D.
Entrepix, Inc.
Tel: 602 426-8668
rrhoades@entrepix.com

Brian Orzechowski and Jeff Wilmer
Divind, LLC
Tel: 480 539-5565
jwilmer@divindtech.com